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Analysis of Open-Type Waveguides by the
Vector Finite-Element Method

Masanori Matsuhara, Hirotomo Yunoki, and Akihiro Maruta

Abstract—A novel variational expression that is suitable for
the waveguide analysis is proposed. In addition, a new mapping
technique to analyze open-type waveguides is introduced. Any
arbitrarily shaped waveguides can be analyzed by the finite-ele-
ment method with this variational expression and the mapping
technique. The dispersion characteristics of the rectangular di-
electric waveguide and the microstrip line are demonstrated and
these results shows the validity and usefulness of this method
well.

I. INTRODUCTION

UMERICALLY analyzing the variational expression by

the finite-element method (FEM) is a powerful means to
analyze the waveguide problems [1]. It can be applied to any
arbitrarily shaped waveguides. But it has been difficult to
apply the FEM to open-type waveguides.

In this letter, we propose a novel variational expression
employing the electric field components as the trial functions.
It is formulated in the form of a functional of propagation
constant §. In addition, we introduce a new mapping tech-
nique to apply the FEM to open type waveguides. By using
this technique, the variational expression is transformed into
the algebraic eigenvalue problem, in which the propagation
constant (3 is the eigenvalue. We can easily analyze open
type waveguides by the previously mentioned method.

II. VARIATIONAL EXPRESSION

The cross section of a waveguide is subdivided into a finite
number of elements. The electric field E in each element is
expressed as follows,

E = (fi+jbi.g)exp {j(wt ~ B2)}, (1)

where i, is the unit vector in the z direction, f, and g, are
the transverse vector function and the scalar function, respec-
tively. Substituting (1) into the Maxwell’s equation, the
following differential equations and the boundary conditions
are derived:

1
wzeﬂft — UV, X ;Vt Xf— 62(ft + V,gz) =0
5 1
wepng, + uv, - ;(ft + Vtgz) = 0. (2)
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For the boundary between the element and the element:

i, (n x f,) = continuous function

g, = continuous function (3)

continuous function

1
n- ;(ft+ Vtgz)

continuous function. (4)

1
i, =V, xf,
"

For the boundary between the element and the electric wall:
i (nxf)=0, g =0 (5)

For the boundary between the element and the magnetic wall:

1 1
ne(fHVE) =0 i =YX, =0, (6)

where n is a normal unit vector to the boundary of each
element.

The following equation is the variational expression that
satisfies (2) and the boundary condition:

1
% [ =(eenl £,P= 19, % 1,1%) ds
62(ft7gz)= 1” 4
S [ —(14+ Ve P el g.]?) ds

u
™

where D represents a summation taken over all elements

and dS denotes the surface integration on each element.

The trial functions f, and g, in (7) must satisfy the bound-
ary conditions (4) and (5) for (7) to be the variational
expression.

Equation (7) is a novel variational expression employing
the electric field components as the trial functions. Tt is
formulated in the form of a functional of the propagation
constant (3.

III. AppLicaTION OF THE FEM TO OPEN TYPE
‘WAVEGUIDES

This section describes a mapping technique to apply the
FEM to open type waveguides. First, we divide the cross
section of a waveguide into two parts. One is the finite inner
region S, including the main guiding structure, and the other
is the infinite outer region S,. Next, we introduce the
coordinate transformation defined in (8) and let the infinite
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outer region S, be transformed into the finite region S,
shown in Fig. 1.

X y

= R
y x2+y2

oy ©)

According to the procedure of the FEM, we divide the
finite region S, and S, into a finite number of triangular
elements. The region S, including the complex guiding struc-
ture is not transformed, so S, can be divided easily. The
region S, has the simple structure, so the transformed region
S, can be also divided easily.

The trial functions f, and g, in each element are ex-
panded as follows,

6
Z N}S)(x, y)d)m’ in Sl’
f _ m=1
t 6 ) )
S {D.(%,9) - NO(%,9)}4,, inb,,
m=1
6
> N@P(x,¥)¥,, S,
g, =" (9)
Z Nrgz)('%’ j’)‘l’m’ in ‘§2»
m=1

where ¢,, and ¢, are the unknown expansion coefficients.
N 'and N2 are the linear vector shape function [1] and the
quadratic scalar shape function [2], respectively.

Dm(fc, ) is the dyadic defined as follows:

1
S {(9° = ) (i1 - i5i5)

D, =D, = )Acz_‘_y
i i

“2’23’("2’.& + iﬁifc)}a (10)

where (%;, ;) is the coordinate of a vertex i. The trial
functions satisfying the boundary condition (4) and (5) are
easily constructed by using the shape functions of (9).

Substituting (9) into (7) and using stationary condition of
the variational expression, we can obtain a generalized eigen-
value problem as follows,

[A]{x} = B[ B]{x} (11)
Here, [ A] and [ B] are real symmetric matrices describing
the structure of the waveguide. { x} is the column vector with
the elements of ¢,, and y,,. The propagation constant 3 of
the guided mode can be obtained by solving (11).

IV. NuMmEricAL EXAMPLES

We first analyze the rectangular dielectric waveguide shown
in Fig. 2. The width and the height of the core are a and b,
respectively, €,, €, and ¢, are the permittivities of the core,
the cladding and the vacuum, respectively. k, is the wave-
number in the vacuum.

Letting the boundary curve L between S; and S, be the
circumscribed circle of the core, we divide S, and S, into N
triangular elements whose size is about the same. Using the
symmetricity of the waveguide, a quarter of that is consid-
ered and let N/4 equal 104. Fig. 2 shows the dispersion

377
Y y
A
Jan U an
- " -
A
S2 S]
Fig. 1. Mapping from S, S, to ,§1, §2.
2 T )| T
a
-
£&; $b
3
N 1.5 1
1 1 | 1
2 4 6 8 10
k()a

Fig. 2. Dispersion characteristics of the rectangular dielectric waveguide
(ko = w1/€eopg > € = 2.25¢y, €5 = ¢y, b = 0.5a).
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Fig. 3. Dispersion characteristics of the microstrip line (ky, = w+/€gpq
€ = 13¢g, €, = €y, w = 1.5h).

0.6

characteristics and that is in good agreement with the results
obtained by J. E. Goell [3] using the collocation method.
The next numerical example has been carried out with the
microstrip line shown in Fig. 3. The spacing between the
strip and the ground conductor is / and the strip width is w.
¢, and ¢, are the permittivities of the dielectric substrate and
the cladding, respectively. Fig. 3 shows the dispersion char-
acteristics and that is in good agreement with the results
obtained by X. Zhang et al. [4] using the FD-TD method.

V. CoNCLUSION

In this letter, we propose a novel variational expression
employing electric field components as the trial functions. It
is formulated in the form of a functional of the propagation
constant, so it suits waveguide analysis. In addition, we



378

introduce a new mapping technique to apply the FEM to open
type waveguides. Any arbitrarily shaped waveguide including
open region can be analyzed easily by using the previously
mentioned method.
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