
376 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 1, NO. 12, DECEMBER 1991

Analysis of Open-Type Waveguides by the

Vector Finite-Element Method
Masanori Matsuhara, Hirotomo Yunoki, and Akihiro Maruta

Abstract—A novel variational expression that is suitable for

the waveguide analysis is proposed. In addition, a new mapping
technique to analyze open-type waveguides is introduced. Any

arbitrarily shaped waveguides can be analyzed by the finite-ele-
ment method with this variational expression and the mapping

technique. The dispersion characteristics of the rectangular dl-

electric waveguide and the microstrip line are demonstrated and

these results shows the validity and usefulness of this method
well.

I. INTRODUCTION

N UMERICALLY analyzing the variational expression by

the finite-element method (FEM) is a powerful means to

analyze the waveguide problems [1]. It can be applied to any

arbitrarily shaped waveguides. But it has been difficult to

apply the FEM to open-type waveguides.
In this letter, we propose a novel variational expression

employing the electric field components as the trial fimctions.

It is formulated in the form of a functional of propagation

constant (3. In addition, we introduce a new mapping tech-

nique to apply the FEM to open type waveguides. By using

this technique, the variational expression is transformed into

the algebraic eigenvalue problem, in which the propagation

constant ~ is the eigenvahle. We can easily analyze open

type waveguides by the previously mentioned method.

II. VARIATIONAL EXPRESSION

The cross section of a waveguide is subdivided into a finite

number of elements. The electric field E in each element is

expressed as follows,

E = (/, +~13iZgz) exp {~(wt - @z)), (1)

where iz is the unit vector in the z direction, f ~and gz are

the transverse vector function and the scalar function, respec-

tively. Substituting (1) into the Maxwell’s equation, the

following differential equations and the boundary conditions

are derived:

w%pft – /.Lvtx ht x ft – pz(ff + Vtgz) = o
P

W2WZ + N, “ ;(ft + Vtg,) = o. (2)
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For the boundary between the element and the element:

iz . (n X ~,) = continuous function

gz = continuous function

n “ j (f, + Vtgz)= continuous function

1
iz” — F’f X ft = continuous function.

P

For the boundary between the element and the electric

iZ. (rzxf,)=O, gZ=O.

(3)

(4)

wall:

(5)

For the boundary between the element and the magnetic wall:

where n is a normal unit vector to the boundary of each

element.

The following equation is the variational expression that

satisfies (2) and the boundary condition:

(7)

where ~ represents a summation taken over all elements

and
/

dS denotes the surface integration on each element.

The trial functions ft and gz in (7) must satisfy the bound-

ary conditions (4) and (5) for (7) to be the variational

expression.

Equation (7) is a newel variational expression employing

the electric field components as the trial functions. It is

formulated in the form of a functional of the propagation
constant f?.

III. APPLICATION OF THE FEM TO OPEN TYPE

WAVEGUIDES

This section describes a mapping technique to apply the

FEM to open type waveguides. First, we divide the cross

section of a waveguide into two parts. One is the finite inner

region SI including the main guiding structure, and the other

is the infinite outer region S2. Next, we introduce the

coordinate transformation defined in (8) and let the infinite
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outer region S2 be transformed into the finite region

shown in Fig. 1.

x Y~= j)= ~

x*+y2’ x +yz”

According to the procedure of the FEM, we divide

32

(8)

the

finite region S1 and ~z into a finite number of triangular

elements. The region SI including the complex guiding struc-

ture is not transformed, so S1 can be divided easily. The

region S2 has the simple structure, so the transformed region

~2 can be also divided easily.

The trial functions f ~ and gz in each element are ex-

panded as follows,

f,=

gz=

(6

5 x?(~> Y)+m> in S1,
m=l

6 (9)

where dm and ~m are the unknown expansion coefficients.

iV#) ‘and iV~2) are the linear vector shape fimction [1] and the

quadratic scalar shape function [2], respectively.

Dm( 2, ~) is the dyadic defined as follows:

where (ii, ji) is the coordinate of a vertex i. The trial

functions satisfying the boundary condition (4) and (5) are

easily constructed by using the shape functions of (9).

Substituting (9) into (7) and using stationary condition of

the variational expression, we can obtain a generalized eigen-

value problem as follows,

[~l{x}=P2[~] {x}. (11)

Here, [A] and [B] are real symmetric matrices describing

the structure of the waveguide. {x} is the column vector with
the elements of ~m and ~m. The propagation constant ~ of

the guided mode can be obtained by solving (11).

IV. NUMERICAL EXAMPLES

We first analyze the rectangular dielectric waveguide shown

in Fig. 2. The width and the height of the core are a and b,

respectively, ~~, 62 and e. are the permittivities of the core,

the cladding aud the vacuum, respectively. k. is the wave-

number in the vacuum.
Letting the boundary curve L between S, and S2 be the

circumscribed circle of the core, we divide S1 and S2 into N

triangular elements whose size is about the same. Using the

symmetricity of the waveguide, a quarter of that is consid-

ered and let N/4 equal 104. Fig. 2 shows the dispersion

‘f

+P-
L
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,.
Fig. 1. Mapping from S,, S2 to ~1, S2.

2 I 1 I

a
< >

2 4 6 8 10

377

k. a

Fig. 2. Dispersion characteristics of the rectangular dielectric waveguide

(k. = ar&, c1 = 2.25,., ,2 = eo, b = 0.5a).
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Fig. 3. Dispersion characteristics of the microstrip line (k. = c.rG,

cl = 13%, C2 = Co, w = 1.5h).

characteristics and that is in good agreement with the results

obtained by J. E. Goell [3] using the collocation method.

The next numerical example has been carried out with the

microstrip line shown in Fig. 3. The spacing between the

strip and the ground conductor is h and the strip width is w.

e~ and e2 are the permittivities of the dielectric substrate and

the cladding, respectively. Fig. 3 shows the dispersion char-

acteristics and that is in good agreement with the results

obtained by X. Zhang et al. [4] using the FD–TD method.

V. CONCLUSION

In this letter, we propose a novel variational expression

employing electric field components as the trial functions. It

is formulated in the form of a fictional of the propagation

constant, so it suits waveguide analysis. In addition, we.
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introduce a new mapping technique to apply the FEM to open [2]

type waveguides. Any arbitrarily shaped waveguide including
[3]

open region can be analyzed easily by using the previously

mentioned method.
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